Wall Crossing Bijections and Representations of Rational Cherednik Algebras

Alec Sun

Mentor Seth Shelley-Abrahamson

PRIMES-USA May 21, 2016

Alec Sun (Mentor Seth Shelley-Abrahamson)Wall Crossing Bijections and Representations PRIMES-USA May 21, 2016 1 / 14

Young diagrams

A partition λ is a weakly-decreasing list of positive integers

$$(\lambda_1, \lambda_2, \dots, \lambda_k)$$

 $\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_k$
of *length k*. Each λ_i is a *part*, and $|\lambda| = \sum_i \lambda_i$ is the *size*

3

-∢∃>

Young diagrams

A partition λ is a weakly-decreasing list of positive integers

 $(\lambda_1, \lambda_2, \dots, \lambda_k)$ $\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_k$

of *length* k. Each λ_i is a *part*, and $|\lambda| = \sum_i \lambda_i$ is the *size*.

We represent a partition visually as a *Young diagram* whose row lengths correspond with part sizes.

Example

The Young diagram associated to partition $\lambda = (3, 1)$ is

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Symmetric bipartitions

A bipartition is a 2-tuple of partitions

$$\lambda = (\lambda^1, \lambda^2) = ((\lambda_1^1, \lambda_2^1, \ldots), (\lambda_1^2, \lambda_2^2, \ldots))$$

with size

$$|\lambda| = |\lambda^1| + |\lambda^2|.$$

Bipartitions can be represented as 2-tuples of Young diagrams.

글 > - + 글 >

- 3

Symmetric bipartitions

A bipartition is a 2-tuple of partitions

$$\lambda = (\lambda^1, \lambda^2) = ((\lambda_1^1, \lambda_2^1, \ldots), (\lambda_1^2, \lambda_2^2, \ldots))$$

with size

$$|\lambda| = |\lambda^1| + |\lambda^2|.$$

Bipartitions can be represented as 2-tuples of Young diagrams.

Definition

A bipartition is symmetric if $\lambda^1 = \lambda^2$.

Example

The bipartition $\lambda = ((3, 1), (3, 1))$ is a symmetric bipartition.

Charged bipartitions

Definition

A *l*-charge is a *l*-tuple of integers $s = (s_1, \ldots, s_l)$.

Alec Sun (Mentor Seth Shelley-Abrahamson)Wall Crossing Bijections and Representations PRIMES-USA May 21, 2016 4 / 14

(本部) (本語) (本語) (三語

Charged bipartitions

Definition

A *l*-charge is a *l*-tuple of integers $s = (s_1, \ldots, s_l)$.

Definition

A 2-charge $s = (s_1, s_2)$ is asymptotic for a given bipartition λ if $|s_1 - s_2| > |\lambda|$.

Example

The charge s = (0,9) is asymptotic for the bipartition $\lambda = ((3,1), (3,1))$.

◆□▶ ◆帰▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Charged bipartitions

Definition

A *l*-charge is a *l*-tuple of integers $s = (s_1, \ldots, s_l)$.

Definition

A 2-charge $s = (s_1, s_2)$ is asymptotic for a given bipartition λ if $|s_1 - s_2| > |\lambda|$.

Example

The charge s = (0,9) is asymptotic for the bipartition $\lambda = ((3,1), (3,1))$.

Definition

A charged bipartition is the data of a bipartition λ and a 2-charge s, written as $|\lambda, s\rangle$.

Alec Sun (Mentor Seth Shelley-Abrahamson)Wall Crossing Bijections and Representations PRIMES-USA May 21, 2016 4 / 14

イロト 不得 トイヨト イヨト 二日

Finite-dimensionality

Remark

Charged bipartitions $|\lambda, s\rangle$ naturally label irreducible representations $L_{e,s}(\lambda)$ of $H_{|\lambda|,e,s}$. We call $|\lambda, s\rangle$ finite-dimensional if $L_{e,s}(\lambda)$ is finite-dimensional.

★週 ▶ ★ 臣 ▶ ★ 臣 ▶ 二 臣

Finite-dimensionality

Remark

Charged bipartitions $|\lambda, s\rangle$ naturally label irreducible representations $L_{e,s}(\lambda)$ of $H_{|\lambda|,e,s}$. We call $|\lambda, s\rangle$ finite-dimensional if $L_{e,s}(\lambda)$ is finite-dimensional.

Losev introduces *wall crossing bijections* to reduce the general problem of classifying finite-dimensional charged bipartitions to the case of asymptotic charge.

Theorem

Let $s_2 > s_1$ and suppose $s = (s_1, s_2)$ is asymptotic for bipartition λ . Then $\lambda^2 \neq \emptyset \implies |\lambda, s\rangle$ not finite-dimensional.

Example

The partition $|(\emptyset, (3)), (0, 4)\rangle$ is not finite-dimensional.

Wall crossing bijections

Jacon and Lecouvey have given a simple combinatorial rule for the computation of wall crossing bijections.

イロト 不得下 イヨト イヨト 二日

Wall crossing bijections

Jacon and Lecouvey have given a simple combinatorial rule for the computation of wall crossing bijections.

Operator Φ[∞]_(s1,s2)
Let s = (s1, s2) be a 2-charge. The wall crossing bijection Φ[∞]_(s1,s2)
takes bipartitons to bipartitions.
preserves size.
preserves finite-dimensionality.

() <) <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <

Wall crossing bijections

Jacon and Lecouvey have given a simple combinatorial rule for the computation of wall crossing bijections.

Operator Φ[∞]_(s1,s2)
Let s = (s₁, s₂) be a 2-charge. The wall crossing bijection Φ[∞]_(s1,s2)
takes bipartitons to bipartitions.
preserves size.
preserves finite-dimensionality.

Example

Let
$$\lambda = ((1), (2, 1))$$
 and $s = (0, 2)$, then $\Phi_{(s_1, s_2)}^{\infty}(\lambda) = (\emptyset, (2, 1, 1))$.

6 / 14

 $\Phi^{\infty}_{(s_1,s_2)}$ for asymptotic (s_1,s_2)

Remark

Consider a bipartition λ and a 2-charge (s_1, s_2) . If $s_2 > |\lambda| + s_1$ is asymptotic, then $\Phi_{(s_1, s_2)}^{\infty}(\lambda) = \lambda$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

$$\Phi^{\infty}_{(s_1,s_2)}$$
 for asymptotic (s_1,s_2)

Remark

Consider a bipartition λ and a 2-charge (s_1, s_2) . If $s_2 > |\lambda| + s_1$ is asymptotic, then $\Phi_{(s_1, s_2)}^{\infty}(\lambda) = \lambda$.

Example

Let
$$\lambda = ((3,1), (3,1))$$
 and $s = (0,10)$.

- 4 週 ト - 4 三 ト - 4 三 ト

$\Theta_{e,s}$ as composition of consecutive $\Phi^{\infty}_{(s_1,ke+s_2)}$

Definition

Let e > 1 be an integer and $s = (s_1, s_2)$ a 2-charge. Define

$$\Theta_{e,s} = \prod_{k=0}^{\infty} \Phi_{(s_1,ke+s_2)}^{\infty} = \cdots \circ \Phi_{(s_1,Ne+s_2)}^{\infty} \circ \cdots \circ \Phi_{(s_1,e+s_2)}^{\infty} \circ \Phi_{(s_1,s_2)}^{\infty}$$

A B M A B M

- 2

$\Theta_{e,s}$ as composition of consecutive $\Phi^{\infty}_{(s_1,ke+s_2)}$

Definition

Let e > 1 be an integer and $s = (s_1, s_2)$ a 2-charge. Define

$$\Theta_{e,s} = \prod_{k=0}^{\infty} \Phi_{(s_1,ke+s_2)}^{\infty} = \cdots \circ \Phi_{(s_1,Ne+s_2)}^{\infty} \circ \cdots \circ \Phi_{(s_1,e+s_2)}^{\infty} \circ \Phi_{(s_1,s_2)}^{\infty}$$

Let λ be a bipartition, e > 1 an integer, and $s = (s_1, s_2)$ a 2-charge with $s_1 \leq s_2$.

Remark

Choose integer N so that charge $s' = (s_1, Ne + s_2)$ is asymptotic for λ . Then $|\Theta_{e,s}(\lambda), s'\rangle$ is finite-dimensional if and only if $|\lambda, s\rangle$ is finite-dimensional.

Main Question

Remark

 $|\Theta_{e,s}(\lambda), s'\rangle$ is finite-dimensional if and only if $|\lambda, s\rangle$ is finite-dimensional.

Main Question

Remark

 $|\Theta_{e,s}(\lambda), s'\rangle$ is finite-dimensional if and only if $|\lambda, s\rangle$ is finite-dimensional.

Let *n* and *e* be positive even integers, and let $s = (0, \frac{e}{2})$. Choose *N* for which $s' = (0, Ne + \frac{e}{2})$ is asymptotic.

Problem

Does there exist a nonempty symmetric bipartition λ such that the charged bipartition

$$|\Theta_{e,s}(\lambda),s'
angle$$

is finite-dimensional?

Main Question

Remark

 $|\Theta_{e,s}(\lambda), s'\rangle$ is finite-dimensional if and only if $|\lambda, s\rangle$ is finite-dimensional.

Let *n* and *e* be positive even integers, and let $s = (0, \frac{e}{2})$. Choose *N* for which $s' = (0, Ne + \frac{e}{2})$ is asymptotic.

Problem

Does there exist a nonempty symmetric bipartition λ such that the charged bipartition

 $|\Theta_{e,s}(\lambda),s'
angle$

is finite-dimensional?

Conjecture

No. In fact, the second component is always nonempty.

・ロン ・四 ・ ・ ヨン ・ ヨン

- 34

 $|\Theta_{e,s}(\lambda), s'\rangle$ is not finite-dimensional for symmetric λ and $s = (0, \frac{e}{2})$.

Example

Let
$$\lambda = ((3,1), (3,1)), e = 2$$
, and $s = (0,1)$. Then

$$\Theta_{e,s}(\lambda) = \Phi_{(0,7)}^{\infty} \circ \Phi_{(0,5)}^{\infty} \circ \Phi_{(0,3)}^{\infty} \circ \Phi_{(0,1)}^{\infty}(\lambda)$$

イロト イポト イヨト イヨト

$$|\Theta_{e,s}(\lambda), s'
angle$$
 is not finite-dimensional for symmetric λ and $s = (0, \frac{e}{2})$.

Example

Let
$$\lambda = ((3, 1), (3, 1)), e = 2$$
, and $s = (0, 1)$. Then

$$\Theta_{e,s}(\lambda) = \Phi^\infty_{(0,7)} \circ \Phi^\infty_{(0,5)} \circ \Phi^\infty_{(0,3)} \circ \Phi^\infty_{(0,1)}(\lambda).$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

$$|\Theta_{e,s}(\lambda), s'
angle$$
 is not finite-dimensional for symmetric λ and $s = (0, rac{e}{2})$.

Example

Let
$$\lambda = ((3,1), (3,1)), e = 2$$
, and $s = (0,1)$. Then

$$\Theta_{e,s}(\lambda) = \Phi^\infty_{(0,7)} \circ \Phi^\infty_{(0,5)} \circ \Phi^\infty_{(0,3)} \circ \Phi^\infty_{(0,1)}(\lambda).$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

3

Alec Sun (Mentor Seth Shelley-Abrahamson)Wall Crossing Bijections and Representations PRIMES-USA May 21, 2016 10 / 14

$$|\Theta_{e,s}(\lambda), s'
angle$$
 is not finite-dimensional for symmetric λ and $s = (0, \frac{e}{2})$.

Example

Let
$$\lambda = ((3, 1), (3, 1)), e = 2$$
, and $s = (0, 1)$. Then

$$\Theta_{e,s}(\lambda) = \Phi^\infty_{(0,7)} \circ \Phi^\infty_{(0,5)} \circ \Phi^\infty_{(0,3)} \circ \Phi^\infty_{(0,1)}(\lambda).$$

Alec Sun (Mentor Seth Shelley-Abrahamson)Wall Crossing Bijections and Representations PRIMES-USA May 21, 2016 10 / 14

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

$$|\Theta_{e,s}(\lambda), s'\rangle$$
 is not finite-dimensional for symmetric λ and $s = (0, \frac{e}{2})$.

Example

Let
$$\lambda = ((3,1), (3,1)), e = 2$$
, and $s = (0,1)$. Then

$$\Theta_{e,s}(\lambda) = \Phi^\infty_{(0,7)} \circ \Phi^\infty_{(0,5)} \circ \Phi^\infty_{(0,3)} \circ \Phi^\infty_{(0,1)}(\lambda).$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

$\Theta_{2,(0,1)}(\lambda^1,\lambda^1)$ is not finite-dimensional

Example

Thus $|\Theta_{2,(0,1)}((3,1),(3,1)), (0,1+2N)\rangle$ for $N \gg 0$ is not finite-dimensional.

(B)

$\Theta_{2,(0,1)}(\lambda^1,\lambda^1)$ is not finite-dimensional

Example

Thus $|\Theta_{2,(0,1)}((3,1),(3,1)), (0,1+2N)\rangle$ for $N \gg 0$ is not finite-dimensional.

We have proved the conjecture in the case e = 2.

Theorem

 $|\Theta_{2,(0,1)}(\lambda), (0, 1+2N)\rangle$ for $N \gg 0$ is not finite-dimensional for symmetric λ .

A B F A B F

$\Theta_{2,(0,1)}(\lambda^1,\lambda^1)$ is not finite-dimensional

Example

Thus $|\Theta_{2,(0,1)}((3,1),(3,1)), (0,1+2N)\rangle$ for $N \gg 0$ is not finite-dimensional.

We have proved the conjecture in the case e = 2.

Theorem

 $|\Theta_{2,(0,1)}(\lambda), (0, 1+2N)\rangle$ for $N \gg 0$ is not finite-dimensional for symmetric λ .

For asymptotic s',

$$\Theta_{2,(0,1)}((\lambda,\lambda)), s' \rangle = (\emptyset, (\lambda_1, \lambda_1, \lambda_2, \lambda_2, \ldots)).$$

Alec Sun (Mentor Seth Shelley-Abrahamson) Wall Crossing Bijections and Representations PRIMES-USA May 21, 2016 11 / 14

$\Theta_{2,(0,1)}$ on $\lambda = ((4,3,1),(4,3,1))$

Example

イロト イポト イヨト イヨト

э

 $\Theta_{2,(0,1)}$ on $\lambda = ((4,3,1),(4,3,1))$

Alec Sun (Mentor Seth Shelley-Abrahamson)Wall Crossing Bijections and Representations PRIMES-USA May 21, 2016 12 / 14

・ 同下 ・ ヨト ・ ヨト

 $\Theta_{2,(0,1)}$ on $\lambda = ((4,3,1),(4,3,1))$

(人間) トイヨト イヨト

 $\Theta_{2,(0,1)}$ on $\lambda = ((4,3,1),(4,3,1))$

Alec Sun (Mentor Seth Shelley-Abrahamson)Wall Crossing Bijections and Representations PRIMES-USA May 21, 2016 12 / 14

(人間) システン イラン

Conjecture

Let λ be symmetric and $s = (0, \frac{e}{2})$. The largest part of the second component, λ_1^2 , is invariant under $\Theta_{e,s}(\lambda)$.

★掃▶ ★注▶ ★注▶ → 注

Conjecture

Let λ be symmetric and $s = (0, \frac{e}{2})$. The largest part of the second component, λ_1^2 , is invariant under $\Theta_{e,s}(\lambda)$.

This conjecture will imply the original conjecture:

Conjecture

 $|\Theta_{e,s}(\lambda), s'\rangle$ is not finite-dimensional for symmetric λ and $s = (0, \frac{e}{2})$.

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Conjecture

Let λ be symmetric and $s = (0, \frac{e}{2})$. The largest part of the second component, λ_1^2 , is invariant under $\Theta_{e,s}(\lambda)$.

This conjecture will imply the original conjecture:

Conjecture

 $|\Theta_{e,s}(\lambda), s'\rangle$ is not finite-dimensional for symmetric λ and $s = (0, \frac{e}{2})$.

We have verified the conjecture via computer for $|\lambda| < 50$. We are working toward a proof for general *e*.

(過) () ティート () 日

I would like to thank

- My mentor Seth Shelley-Abrahamson
- The PRIMES-USA Program
- Head mentor Tanya Khovanova

∃ → (∃ →